
DEEP JS FOUNDATIONS
KYLE SIMPSON GETIFY@GMAIL.COM

Motivations?

Have you ever read
any part of the JS

specification?

https://twitter.com/YDKJS/status/1099716798088400899

Whenever there's a divergence
between what your brain thinks

is happening, and what the
computer does, that's where

bugs enter the code.
--getify's law #17

Course Overview

Types
• Primitive Types
• Abstract Operations
• Coercion
• Equality
• TypeScript, Flow, etc.

Objects (Oriented)
• this
• class { }
• Prototypes
• OO vs. OLOO

Scope
• Nested Scope
• Hoisting
• Closure
• Modules

...but before we begin...

Types
• Primitive Types
• Abstract Operations
• Coercion
• Equality
• TypeScript, Flow, etc.

"In JavaScript, everything
is an object."

false

Primitive Types

• undefined
• string
• number
• boolean
• object
• symbol

Primitive Types

• undeclared?
• null?
• function?
• array?
• bigint?

• undefined
• string
• number
• boolean
• object
• symbol
• null
• bigint (future) Primitive Types

• object
• function
• array

Objects
Not

In JavaScript, variables
don't have types,

values do.

Primitive Types: typeof

Primitive Types: typeof

Primitive Types: staring into the emptiness

undefined
vs.

undeclared
vs.

uninitialized (aka TDZ)

Special Values

NaN (“not a number”)

Special Values

Special Values: NaN

Special Values: NaN

NaN: Invalid Number
don't: undefined
don't: null
don't: false
don't: -1
don't: 0

Negative Zero

Special Values

Special Values: -0

Special Values: -0

Special Values: -0

Fundamental Objects

aka: Built-In Objects
aka: Native Functions

• String()
• Number()
• Boolean()

Fundamental Objects

• Object()
• Array()
• Function()
• Date()
• RegExp()
• Error()

Use new: Don't use new:

Fundamental Objects

(aka "coercion")

Abstract Operations

ToPrimitive(hint) (7.1.1)

Abstract Operations: ToPrimitive

valueOf()
toString()

toString()
valueOf()

hint: "number" hint: "string"

Abstract Operations

ToString (7.1.12)

Abstract Operations: ToString

null
undefined

true
false

3.14159
0

-0

"null"
"undefined"
"true"
"false"
"3.14159"
"0"
"0"

Abstract Operations: ToString (Array/Object)

ToString (object):
ToPrimitive (string)
aka: toString() / valueOf()

[]
[1,2,3]

[null,undefined]
[[[],[],[]],[]]

[,,,,]

""
"1,2,3"
","
",,,"
",,,"

Abstract Operations: ToString (Array)

{}
{a:2}

{ toString(){ return "X"; } }

"[object Object]"
"[object Object]" 
"X"

Abstract Operations: ToString (Object)

Abstract Operations

ToNumber (7.1.3)

Abstract Operations: ToNumber

""
"0"

"-0"
" 009 "

"3.14159"
"0."
".0"
"."

"0xaf"

0
0
-0
9
3.14159
0
0
NaN
175

Abstract Operations: ToNumber

0
1
0
NaN

false
true
null

undefined

Abstract Operations: ToNumber (Array/Object)

ToNumber (object):
ToPrimitive (number)

aka: valueOf() / toString()

Abstract Operations: ToNumber (Array/Object)

valueOf() { return this; }
(for [] and {} by default):

--> toString()

Coercion: ToNumber (Array)

[""]
["0"]

["-0"]
[null]

[undefined]
[1,2,3]
[[[[]]]]

0
0
-0
0
0
NaN
0

Coercion: ToNumber (Object)

{ .. }
{ valueOf() { return 3; } }

NaN
3

ToBoolean (7.1.2)

Abstract Operations

TruthyFalsy
“foo”

23
{ a:1 }
[1,3]
true

function(){..} 
...

“”
0, -0
null
NaN
false

undefined

Abstract Operations: ToBoolean

Coercion

Coercion

You claim to avoid coercion
because it's evil, but...

Coercion: we all do it...

Coercion: string concatenation (number to string)

Coercion: string concatenation (number to string)

Coercion: string concatenation (number to string)

Coercion: number to string

Coercion: number to string

Coercion: number to string

OK, OK... but, what about...?

Coercion: string to number

Coercion: string to number

Coercion: string to number

Coercion: string to number

Yeah, but...

Coercion: __ to boolean

Recall Falsy vs Truthy?

Coercion: __ to boolean

Coercion: __ to boolean

Coercion: __ to boolean

Ummmm.....

Coercion: primitive to object

Boxing

All programming languages
have type conversions, because

it's absolutely necessary.

You use coercion in JS
whether you admit it or not,

because you have to.

Every language has type
conversion corner cases

Coercion: corner cases

Coercion: corner cases

The Root Of All (Coercion) Evil

Coercion: corner cases

You don't deal with these type
conversion corner cases by

avoiding coercions.

Instead, you have to adopt a
coding style that makes value

types plain and obvious.

A quality JS program embraces
coercions, making sure the types
involved in every operation are
clear. Thus, corner cases are

safely managed.

Type Rigidity
Static Types

Type Soundness

JavaScript's dynamic typing is
not a weakness, it's one of its

strong qualities

But... but... 
what about the junior devs?

Implicit != Magic
Implicit != Bad

Implicit: Abstracted

Hiding unnecessary details,
re-focusing the reader and

increasing clarity

Coercion: implicit can be good (sometimes)

Coercion: implicit can be good (sometimes)

Is showing the reader the
extra type details helpful or

distracting?

"If a feature is sometimes useful
and sometimes dangerous and if

there is a better option then always
use the better option." 

-- "The Good Parts", Crockford

"If a feature is sometimes useful
and sometimes dangerous and if

there is a better option then always
use the better option." 

-- "The Good Parts", Crockford

"If a feature is sometimes useful
and sometimes dangerous and if

there is a better option then always
use the better option." 

-- "The Good Parts", Crockford

"If a feature is sometimes useful
and sometimes dangerous and if

there is a better option then always
use the better option." 

-- "The Good Parts", Crockford

Useful: when the reader is
focused on what's important
Dangerous: when the reader
can't tell what will happen

Better: when the reader
understands the code

It is irresponsible to
knowingly avoid usage of a

feature that can improve code
readability

Equality 
== vs. ===

Loose Equality vs. Strict Equality

== checks value (loose)

=== checks value and type (strict)

?

If you're trying to understand
your code, it's critical you

learn to think like JS

Loose Equality: still types, and ===

Coercive Equality: == and ===

Strict Equality: types and lies

Equality: identity, not structure

== checks value (loose)

=== checks value and type (strict)

Coercive Equality vs. Non-Coercive Equality

== allows coercion (types different)

=== disallows coercion (types same)

Coercive Equality: helpful?

Like every other operation, is
coercion helpful in an equality

comparison or not?

Coercive Equality: safe?

Like every other operation, do
we know the types or not?

Coercive Equality: null == undefined

Coercive Equality: null == undefined

Coercive Equality: prefers numeric comparison

Coercive Equality: prefers numeric comparison

Coercive Equality: only primitives

Coercive Equality: only primitives

Coercive Equality: only primitives

Coercive Equality: summary

== Summary:
 

If the types are the same: ===
If null or undefined: equal
If non-primitives: ToPrimitive
Prefer: ToNumber

== Corner Cases

== Corner Cases: WAT!?

== Corner Cases: WAT!?

== Corner Cases: booleans

== Corner Cases: booleans

Avoid:
1. == with 0 or "" (or even " ")
2. == with non-primitives
3. == true or == false : allow

ToBoolean or use ===

The case for preferring ==

Knowing types is always
better than not knowing them

Static Types is not the only (or
even necessarily best) way to

know your types

== is not about comparisons
with unknown types

== is about comparisons
with known type(s), optionally
where conversions are helpful

If you know the type(s) in a
comparison:

If both types are the same,
== is identical to ===

Using === would be unnecessary,
so prefer the shorter ==

Since === is pointless when the types don't match,
it's similarly unnecessary when they do match.

If you know the type(s) in a
comparison:

If the types are different, using
one === would be broken

Prefer the more powerful ==
or don't compare at all

If you know the type(s) in a
comparison:

If the types are different, the
equivalent of one == would be

two (or more!) === (ie, "slower")

Prefer the "faster" single ==

If you know the type(s) in a
comparison:

If the types are different, two (or
more!) === comparisons may

distract the reader

Prefer the cleaner single ==

If you know the type(s) in a
comparison:

Summary: whether the types match or
not, == is the more sensible choice

If you don't know the type(s) in
a comparison:

Not knowing the types means not
fully understanding that code

So, best to refactor so you
can know the types

If you don't know the type(s) in
a comparison:

The uncertainty of not knowing
types should be obvious to reader

The most obvious signal is ===

If you don't know the type(s) in
a comparison:

Not knowing the types is equivalent
to assuming type conversion

Because of corner cases, the only
safe choice is ===

If you don't know the type(s) in
a comparison:

Summary: if you can't or won't use
known and obvious types, === is

the only reasonable choice

Even if === would always be
equivalent to == in your code,

using it everywhere sends a wrong
semantic signal: "Protecting myself
since I don't know/trust the types"

Summary: making types
known and obvious leads to

better code. If types are
known, == is best.  

 
Otherwise, fall back to ===.

TypeScript, Flow, and
type-aware linting

Benefits:
1. Catch type-related mistakes
2. Communicate type intent
3. Provide IDE feedback

Caveats:
1. Inferencing is best-guess, not a

guarantee
2. Annotations are optional
3. Any part of the application that

isn't typed introduces uncertainty

Type-Aware Linting: inferencing

TypeScript & Flow

Type-Aware Linting: annotating

TypeScript & Flow

Type-Aware Linting: custom types & signatures

TypeScript & Flow

Type-Aware Linting: validating operand types

TypeScript & Flow

Type-Aware Linting: TypeScript vs. Flow

https://github.com/niieani/typescript-vs-flowtype

https://github.com/niieani/typescript-vs-flowtype

TypeScript & Flow:
Pros and Cons

They make types more
obvious in code

TypeScript/Flow: Pros

Familiarity: they look like other
language's type systems

TypeScript/Flow: Pros

Extremely popular these days

TypeScript/Flow: Pros

They're very sophisticated and
good at what they do

TypeScript/Flow: Pros

They use "non-JS-standard"
syntax (or code comments)

TypeScript/Flow: Cons

They require* a build process,
which raises the barrier to entry

TypeScript/Flow: Cons

Their sophistication can be
intimidating to those without

prior formal types experience

TypeScript/Flow: Cons

They focus more on "static
types" (variables, parameters,
returns, properties, etc) than

value types

TypeScript/Flow: Cons

The only way to have confidence
over the runtime behavior is to
limit/eliminate dynamic typing

TypeScript/Flow: Cons

Alternative?

Typl
https://github.com/getify/Typl

https://github.com/getify/Typl

Motivations:
1. Only standard JS syntax
2. Compiler and Runtime (both optional)
3. Completely configurable (ie, ESLint)
4. Main focus: inferring or annotating

values; Optional: "static typing"
5. With the grain of JS, not against it

Typl: inferencing + optional "static types"

Typl: tagging literals

Typl: type assertion (tagging expressions)

Typl: type signatures (functions, objects, etc)

Typl: inline & persistent type signatures

Typl: powerful multi-pass inferencing

Typl: compiler vs runtime

Typl: compiled (some runtime removed)

Much more to come...

Wrapping Up

JavaScript has a (dynamic) type
system, which uses various

forms of coercion for value type
conversion, including equality

comparisons

However, the prevailing
response seems to be: avoid as
much of this system as possible,
and use === to "protect" from
needing to worry about types

Part of the problem with
avoidance of whole swaths of

JS, like pretending === saves
you from needing to know

types, is that it tends to
systemically perpetuate bugs

You simply cannot write quality
JS programs without knowing

the types involved in your
operations.

Alternately, many choose to
adopt a different "static types"

system layered on top

While certainly helpful in some
respects, this is "avoidance" of

a different sort

Apparently, JS's type system is
inferior so it must be replaced,

rather than learned and leveraged

Many claim that JS's type system
is too difficult for newer devs to
learn, and that static types are

(somehow) more learnable

My claim: the better approach is
to embrace and learn JS's type
system, and to adopt a coding
style which makes types as

obvious as possible

By doing so, you will make your
code more readable and more

robust, for experienced and new
developers alike

As an option to aid in that effort, I
created Typl, which I believe

embraces and unlocks the best
parts of JS's types and coercion.

Scope
• Nested Scope
• Hoisting
• Closure
• Modules

Scope: where to look
for things

Scope: sorting marbles

Scope

JavaScript organizes
scopes with functions

and blocks

Scope

Scope
Suzy

React

Scope

ReferenceError

ScopeReferenceError

Scope

undefined
vs.

undeclared

Scope

Scope: which scope?

ReferenceError

Named Function Expressions

Named Function Expressions

1. Reliable function self-reference (recursion, etc)

2. More debuggable stack traces

3. More self-documenting code

Named Function Expressions: Benefits

Named Function Expressions vs. Anonymous Arrow Functions

Named (Arrow) Function Expressions? Still no...

(Named) Function Declaration
>

Named Function Expression
>

Anonymous Function Expression

lexical scope

dynamic scope

Scope: lexical

Scope: lexical

Sublime-Levels

Scope: dynamicTHEORETICAL

Function Scoping

Function Scoping

Function Scoping

Function Scoping

Function Scoping: IIFE
http://benalman.com/news/2010/11/immediately-invoked-function-expression/

http://benalman.com/news/2010/11/immediately-invoked-function-expression/

Function Scoping: IIFE

Function Scoping: IIFE

Function Scoping: IIFE

Block Scoping

Block Scoping: encapsulation

Instead of an IIFE?

Block Scoping: encapsulation

Block Scoping: intent

Block Scoping: let

Block Scoping: "well, actually, not all vars..."

Block Scoping: let + var

Block Scoping: sometimes var > let

Block Scoping: explicit let block

Block Scoping: const(antly confusing)

Hoisting

Scope: hoisting

Scope: hoisting

Scope: hoisting

Scope: hoisting

Scope: hoisting

undefined

Scope: hoisting

Hoisting: let gotcha

"let doesn't hoist"? false

Hoisting: let gotcha

"let doesn't hoist"? false

Closure

Closure

Closure is when a function “remembers” its
lexical scope even when the function is

executed outside that lexical scope.

Closure

Closure

Closure: NOT capturing a value
Suzy

Closure: loops

Closure: loops

Closure: loops

Modules

Namespace, NOT a module

Modules encapsulate data and behavior
(methods) together. The state (data) of a

module is held by its methods via closure.

Classic/Revealing module pattern

Module Factory

ES6 module pattern

workshop.mjs:

Objects (Oriented)
• this
• class { }
• Prototypes
• “Inheritance” vs. “Behavior Delegation”

(OO vs. OLOO)

this

this

A function's this references the execution
context for that call, determined entirely by
how the function was called.

this

A this-aware function can thus have a
different context each time it's called, which
makes it more flexible & reusable.

Recall: dynamic scope

Dynamic Context ~= JS's Dynamic Scope

this vs. Scope

this: implicit binding

this: dynamic binding -> sharing

this: explicit binding

this: hard binding

this: new binding

"constructor calls"

new: steps

1. Create a brand new empty object

2.* Link that object to another object

3. Call function with this set to the new object

4. If function does not return an object,

assume return of this

this: default binding

this: binding rule precedence?

this: determination

1. Is the function called by new?

2. Is the function called by call() or apply()?

 Note: bind() effectively uses apply()

3. Is the function called on a context object?

4. DEFAULT: global object (except strict mode)

this: arrow functions

this: arrow functions

An arrow function is this-bound
(aka .bind()) to its parent function.

this: arrow functions

this: arrow functions

An arrow function is this-bound
(aka .bind()) to its parent function.

An arrow function doesn't define a this,
so it's like any normal variable, and
resolves lexically (aka "lexical this").

An arrow function is this-bound
(aka .bind()) to its parent function.

this: arrow functions

this: arrow functions

Only use => arrow functions when you need
lexical this.

https://github.com/getify/eslint-plugin-arrow-require-this

https://github.com/getify/eslint-plugin-arrow-require-this

ES6

class { }

ES6 class

ES6 class: extends (inheritance)

ES6 class: super (relative polymorphism)

ES6 class: still dynamic this

ES6 class: "fixing" this?

ES6 class: hacktastrophy

https://gist.github.com/getify/86bed0bb78ccb517c84a6e61ec16adca

https://gist.github.com/getify/86bed0bb78ccb517c84a6e61ec16adca

ES6 class: inheritable hard this-bound methods

Prototypes

Prototypes

Objects are built by 
"constructor calls" (via new)

A "constructor call" makes an object
“based on” its own prototype

Prototypes

A "constructor call" makes an
object linked to its own prototype

Prototypes

Prototypes: as "classes"

Prototypes

Prototypes

Prototypes: shadowing

Prototypes: shadowing

Prototypes

“Prototypal Inheritance”

Prototypes: objects linked

OO

Clarifying Inheritance

OO: classical inheritance

Workshop

AnotherWorkshop

deepJS
reactJS

JSRecentParts

OO: “prototypal inheritance”

(another design pattern)

Workshop.prototype

AnotherWorkshop.prototype

deepJS
reactJS

JSRecentParts

OO: js

JavaScript “Inheritance” 
“Behavior Delegation”

OLOO

OLOO: 
Objects Linked to Other Objects

Let's Simplify!

OLOO: recall class?

OLOO: prototypal objects

OLOO: delegated objects

OLOO: Object.create()

Delegation: Design Pattern

Composition Thru Inheritance

LoginFormControllerClass

AuthControllerClass

pageInstance

Composition Over Inheritance

LoginFormControllerClass AuthControllerClass

pageInstance
authInstance

Mixin Composition

LoginFormControllerClass AuthControllerClass

pageInstance authInstance

Delegation (Dynamic Composition)

LoginFormController AuthController

Delegation-Oriented Design

Parent-Child Peer-PeerParent-Child

Delegation-Oriented Design

Delegation-Oriented Design

More Testable

LoginFormController AuthController

MockAuthControllerMockLoginFormController

Know Your JavaScript

DEEP JS FOUNDATIONS
KYLE SIMPSON GETIFY@GMAIL.COM

THANKS!!!!

